3.511 \(\int \frac{\sec ^5(c+d x)}{\sqrt{a+b \sin (c+d x)}} \, dx\)

Optimal. Leaf size=230 \[ -\frac{3 \left (4 a^2-10 a b+7 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{32 d (a-b)^{5/2}}+\frac{3 \left (4 a^2+10 a b+7 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{32 d (a+b)^{5/2}}-\frac{\sec ^4(c+d x) (b-a \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{4 d \left (a^2-b^2\right )}-\frac{\sec ^2(c+d x) \sqrt{a+b \sin (c+d x)} \left (b \left (a^2-7 b^2\right )-6 a \left (a^2-2 b^2\right ) \sin (c+d x)\right )}{16 d \left (a^2-b^2\right )^2} \]

[Out]

(-3*(4*a^2 - 10*a*b + 7*b^2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]])/(32*(a - b)^(5/2)*d) + (3*(4*a^2 +
 10*a*b + 7*b^2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a + b]])/(32*(a + b)^(5/2)*d) - (Sec[c + d*x]^4*(b - a*
Sin[c + d*x])*Sqrt[a + b*Sin[c + d*x]])/(4*(a^2 - b^2)*d) - (Sec[c + d*x]^2*Sqrt[a + b*Sin[c + d*x]]*(b*(a^2 -
 7*b^2) - 6*a*(a^2 - 2*b^2)*Sin[c + d*x]))/(16*(a^2 - b^2)^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.389479, antiderivative size = 230, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {2668, 741, 823, 827, 1166, 206} \[ -\frac{3 \left (4 a^2-10 a b+7 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{32 d (a-b)^{5/2}}+\frac{3 \left (4 a^2+10 a b+7 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{32 d (a+b)^{5/2}}-\frac{\sec ^4(c+d x) (b-a \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{4 d \left (a^2-b^2\right )}-\frac{\sec ^2(c+d x) \sqrt{a+b \sin (c+d x)} \left (b \left (a^2-7 b^2\right )-6 a \left (a^2-2 b^2\right ) \sin (c+d x)\right )}{16 d \left (a^2-b^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^5/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(-3*(4*a^2 - 10*a*b + 7*b^2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]])/(32*(a - b)^(5/2)*d) + (3*(4*a^2 +
 10*a*b + 7*b^2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a + b]])/(32*(a + b)^(5/2)*d) - (Sec[c + d*x]^4*(b - a*
Sin[c + d*x])*Sqrt[a + b*Sin[c + d*x]])/(4*(a^2 - b^2)*d) - (Sec[c + d*x]^2*Sqrt[a + b*Sin[c + d*x]]*(b*(a^2 -
 7*b^2) - 6*a*(a^2 - 2*b^2)*Sin[c + d*x]))/(16*(a^2 - b^2)^2*d)

Rule 2668

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Integer
Q[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 741

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(m + 1)*(a*e + c*d*x)*(
a + c*x^2)^(p + 1))/(2*a*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[1/(2*a*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*
Simp[c*d^2*(2*p + 3) + a*e^2*(m + 2*p + 3) + c*e*d*(m + 2*p + 4)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a
, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(
m + 1)*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), x] + Di
st[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e^2*
(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 827

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2, Subst[Int[(e*f
 - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^5(c+d x)}{\sqrt{a+b \sin (c+d x)}} \, dx &=\frac{b^5 \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+x} \left (b^2-x^2\right )^3} \, dx,x,b \sin (c+d x)\right )}{d}\\ &=-\frac{\sec ^4(c+d x) (b-a \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{4 \left (a^2-b^2\right ) d}+\frac{b^3 \operatorname{Subst}\left (\int \frac{\frac{1}{2} \left (6 a^2-7 b^2\right )+\frac{5 a x}{2}}{\sqrt{a+x} \left (b^2-x^2\right )^2} \, dx,x,b \sin (c+d x)\right )}{4 \left (a^2-b^2\right ) d}\\ &=-\frac{\sec ^4(c+d x) (b-a \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{4 \left (a^2-b^2\right ) d}-\frac{\sec ^2(c+d x) \sqrt{a+b \sin (c+d x)} \left (b \left (a^2-7 b^2\right )-6 a \left (a^2-2 b^2\right ) \sin (c+d x)\right )}{16 \left (a^2-b^2\right )^2 d}-\frac{b \operatorname{Subst}\left (\int \frac{-\frac{3}{4} \left (4 a^4-9 a^2 b^2+7 b^4\right )-\frac{3}{2} a \left (a^2-2 b^2\right ) x}{\sqrt{a+x} \left (b^2-x^2\right )} \, dx,x,b \sin (c+d x)\right )}{8 \left (a^2-b^2\right )^2 d}\\ &=-\frac{\sec ^4(c+d x) (b-a \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{4 \left (a^2-b^2\right ) d}-\frac{\sec ^2(c+d x) \sqrt{a+b \sin (c+d x)} \left (b \left (a^2-7 b^2\right )-6 a \left (a^2-2 b^2\right ) \sin (c+d x)\right )}{16 \left (a^2-b^2\right )^2 d}-\frac{b \operatorname{Subst}\left (\int \frac{\frac{3}{2} a^2 \left (a^2-2 b^2\right )-\frac{3}{4} \left (4 a^4-9 a^2 b^2+7 b^4\right )-\frac{3}{2} a \left (a^2-2 b^2\right ) x^2}{-a^2+b^2+2 a x^2-x^4} \, dx,x,\sqrt{a+b \sin (c+d x)}\right )}{4 \left (a^2-b^2\right )^2 d}\\ &=-\frac{\sec ^4(c+d x) (b-a \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{4 \left (a^2-b^2\right ) d}-\frac{\sec ^2(c+d x) \sqrt{a+b \sin (c+d x)} \left (b \left (a^2-7 b^2\right )-6 a \left (a^2-2 b^2\right ) \sin (c+d x)\right )}{16 \left (a^2-b^2\right )^2 d}-\frac{\left (3 \left (4 a^2-10 a b+7 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a-b-x^2} \, dx,x,\sqrt{a+b \sin (c+d x)}\right )}{32 (a-b)^2 d}+\frac{\left (3 \left (4 a^2+10 a b+7 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b-x^2} \, dx,x,\sqrt{a+b \sin (c+d x)}\right )}{32 (a+b)^2 d}\\ &=-\frac{3 \left (4 a^2-10 a b+7 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{32 (a-b)^{5/2} d}+\frac{3 \left (4 a^2+10 a b+7 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{32 (a+b)^{5/2} d}-\frac{\sec ^4(c+d x) (b-a \sin (c+d x)) \sqrt{a+b \sin (c+d x)}}{4 \left (a^2-b^2\right ) d}-\frac{\sec ^2(c+d x) \sqrt{a+b \sin (c+d x)} \left (b \left (a^2-7 b^2\right )-6 a \left (a^2-2 b^2\right ) \sin (c+d x)\right )}{16 \left (a^2-b^2\right )^2 d}\\ \end{align*}

Mathematica [A]  time = 1.86918, size = 244, normalized size = 1.06 \[ \frac{\sqrt{a-b} \left (3 (a-b)^2 \left (4 a^2+10 a b+7 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )+\sqrt{a+b} \sec ^4(c+d x) \sqrt{a+b \sin (c+d x)} \left (a \left (11 a^2-14 b^2\right ) \sin (c+d x)+3 \left (a^3-2 a b^2\right ) \sin (3 (c+d x))+\left (7 b^3-a^2 b\right ) \cos (2 (c+d x))-9 a^2 b+15 b^3\right )\right )-3 (a+b)^{5/2} \left (4 a^2-10 a b+7 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{32 d \sqrt{a-b} \sqrt{a+b} \left (a^2-b^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^5/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(-3*(a + b)^(5/2)*(4*a^2 - 10*a*b + 7*b^2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]] + Sqrt[a - b]*(3*(a -
 b)^2*(4*a^2 + 10*a*b + 7*b^2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a + b]] + Sqrt[a + b]*Sec[c + d*x]^4*Sqrt
[a + b*Sin[c + d*x]]*(-9*a^2*b + 15*b^3 + (-(a^2*b) + 7*b^3)*Cos[2*(c + d*x)] + a*(11*a^2 - 14*b^2)*Sin[c + d*
x] + 3*(a^3 - 2*a*b^2)*Sin[3*(c + d*x)])))/(32*Sqrt[a - b]*Sqrt[a + b]*(a^2 - b^2)^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.816, size = 618, normalized size = 2.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5/(a+b*sin(d*x+c))^(1/2),x)

[Out]

-3/16/d/(b*sin(d*x+c)+b)^2*b/(a^2-2*a*b+b^2)*(a+b*sin(d*x+c))^(3/2)*a+9/32/d/(b*sin(d*x+c)+b)^2*b^2/(a^2-2*a*b
+b^2)*(a+b*sin(d*x+c))^(3/2)+3/16/d/(b*sin(d*x+c)+b)^2*b/(a-b)*(a+b*sin(d*x+c))^(1/2)*a-11/32/d/(b*sin(d*x+c)+
b)^2*b^2/(a-b)*(a+b*sin(d*x+c))^(1/2)+3/8/d/(a^2-2*a*b+b^2)/(-a+b)^(1/2)*arctan((a+b*sin(d*x+c))^(1/2)/(-a+b)^
(1/2))*a^2-15/16/d/(a^2-2*a*b+b^2)/(-a+b)^(1/2)*arctan((a+b*sin(d*x+c))^(1/2)/(-a+b)^(1/2))*a*b+21/32/d/(a^2-2
*a*b+b^2)/(-a+b)^(1/2)*arctan((a+b*sin(d*x+c))^(1/2)/(-a+b)^(1/2))*b^2-3/16/d/(b*sin(d*x+c)-b)^2*b/(a^2+2*a*b+
b^2)*(a+b*sin(d*x+c))^(3/2)*a-9/32/d/(b*sin(d*x+c)-b)^2*b^2/(a^2+2*a*b+b^2)*(a+b*sin(d*x+c))^(3/2)+3/16/d/(b*s
in(d*x+c)-b)^2*b/(a+b)*(a+b*sin(d*x+c))^(1/2)*a+11/32/d/(b*sin(d*x+c)-b)^2*b^2/(a+b)*(a+b*sin(d*x+c))^(1/2)+3/
8/d/(a^2+2*a*b+b^2)/(a+b)^(1/2)*arctanh((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2))*a^2+15/16/d/(a^2+2*a*b+b^2)/(a+b)^
(1/2)*arctanh((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2))*a*b+21/32/d/(a^2+2*a*b+b^2)/(a+b)^(1/2)*arctanh((a+b*sin(d*x
+c))^(1/2)/(a+b)^(1/2))*b^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5/(a+b*sin(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.13278, size = 566, normalized size = 2.46 \begin{align*} \frac{b^{5}{\left (\frac{3 \,{\left (4 \, a^{2} - 10 \, a b + 7 \, b^{2}\right )} \arctan \left (\frac{\sqrt{b \sin \left (d x + c\right ) + a}}{\sqrt{-a + b}}\right )}{{\left (a^{2} b^{5} - 2 \, a b^{6} + b^{7}\right )} \sqrt{-a + b}} - \frac{3 \,{\left (4 \, a^{2} + 10 \, a b + 7 \, b^{2}\right )} \arctan \left (\frac{\sqrt{b \sin \left (d x + c\right ) + a}}{\sqrt{-a - b}}\right )}{{\left (a^{2} b^{5} + 2 \, a b^{6} + b^{7}\right )} \sqrt{-a - b}} - \frac{2 \,{\left (6 \,{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac{7}{2}} a^{3} - 18 \,{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac{5}{2}} a^{4} + 18 \,{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac{3}{2}} a^{5} - 6 \, \sqrt{b \sin \left (d x + c\right ) + a} a^{6} - 12 \,{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac{7}{2}} a b^{2} + 35 \,{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac{5}{2}} a^{2} b^{2} - 44 \,{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac{3}{2}} a^{3} b^{2} + 21 \, \sqrt{b \sin \left (d x + c\right ) + a} a^{4} b^{2} + 7 \,{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac{5}{2}} b^{4} + 2 \,{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac{3}{2}} a b^{4} - 4 \, \sqrt{b \sin \left (d x + c\right ) + a} a^{2} b^{4} - 11 \, \sqrt{b \sin \left (d x + c\right ) + a} b^{6}\right )}}{{\left (a^{4} b^{4} - 2 \, a^{2} b^{6} + b^{8}\right )}{\left ({\left (b \sin \left (d x + c\right ) + a\right )}^{2} - 2 \,{\left (b \sin \left (d x + c\right ) + a\right )} a + a^{2} - b^{2}\right )}^{2}}\right )}}{32 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/32*b^5*(3*(4*a^2 - 10*a*b + 7*b^2)*arctan(sqrt(b*sin(d*x + c) + a)/sqrt(-a + b))/((a^2*b^5 - 2*a*b^6 + b^7)*
sqrt(-a + b)) - 3*(4*a^2 + 10*a*b + 7*b^2)*arctan(sqrt(b*sin(d*x + c) + a)/sqrt(-a - b))/((a^2*b^5 + 2*a*b^6 +
 b^7)*sqrt(-a - b)) - 2*(6*(b*sin(d*x + c) + a)^(7/2)*a^3 - 18*(b*sin(d*x + c) + a)^(5/2)*a^4 + 18*(b*sin(d*x
+ c) + a)^(3/2)*a^5 - 6*sqrt(b*sin(d*x + c) + a)*a^6 - 12*(b*sin(d*x + c) + a)^(7/2)*a*b^2 + 35*(b*sin(d*x + c
) + a)^(5/2)*a^2*b^2 - 44*(b*sin(d*x + c) + a)^(3/2)*a^3*b^2 + 21*sqrt(b*sin(d*x + c) + a)*a^4*b^2 + 7*(b*sin(
d*x + c) + a)^(5/2)*b^4 + 2*(b*sin(d*x + c) + a)^(3/2)*a*b^4 - 4*sqrt(b*sin(d*x + c) + a)*a^2*b^4 - 11*sqrt(b*
sin(d*x + c) + a)*b^6)/((a^4*b^4 - 2*a^2*b^6 + b^8)*((b*sin(d*x + c) + a)^2 - 2*(b*sin(d*x + c) + a)*a + a^2 -
 b^2)^2))/d